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Difference Approximations for Boundary and Eigenvalue 
Problems for Ordinary Differential Equations 

By Heinz-Otto Kreiss 

Abstract. The boundary value problem for ordinary differential equations is considered 
and a general theory for difference approximation is developed. In particular,theinfluenceof 
extra boundary conditions is investigated and the eigenvalue problem is considered in detail. 

1. Introduction. Consider an nth order linear system of ordinary differential 
equations 

n-1 

(1.1) Ly = dy/dXn + A,(x) dMy/dx" = F 
,U=o 

in the interval 0 < x < 1. Here, y = (yl) (x), ,y'm(x))' * and 

F = (F(l)(x), ... , F(m)(x)) C- C 

are vector functions and the A3(x) C C1 ** are m X m matrices. Furthermore, mn 
linearly independent boundary conditions 

I 

(1.2) Bly = L B3l(O) d3y(O)/dx' + B3l(1) d3y(1)/dx3 = gi, 

I = 0, 1, 2, ,n- 1, 

are given. Thus Bly = g, describes the boundary conditions which contain derivatives 
up to order 1, the B,l are rectangular matrices with r, rows and n columns. Without 
loss of generality, we may assume that the rows of (B,,(O), B,,(l)) are linearly in- 
dependent. Thus, E r, = mn. 

We shall also consider the eigenvalue problem 

(1.3) L4 = X, Bp4 =0, I = 0, 1, 2, ,n- 1, 

and assume that not all complex numbers X are eigenvalues. 
The aim of this paper is to develop a general theory for difference approximation 

of the form (2.1), (2.14). Specifically, we shall investigate the influence of extra bound- 
ary conditions on the speed of convergence. These extra boundary conditions are 
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necessary if r + s, the "width" of the difference approximation, is larger than n. 
Another interesting result is that the behavior of the eigenvalue problem is completely 
determined by the behavior of the corresponding inhomogeneous problem. For 
example, if one can use Richardson extrapolation for the inhomogeneous problem, 
then one can also use it to determine the eigenvalues and the invariant subspaces. No 
assumption of selfadjointness or simplicity of the eigenvalues is needed. 

Remark. The assumption that the coefficients are smooth is no real restriction. H. 
Keller [2] has pointed out a procedure by which one can reduce the case of piece- 
wise smooth coefficients to the case of smooth coefficients. 

2. Formulation of Difference Approximations. We want to solve the problem 
(1.1), (1.2) by difference approximation. Let h = N- , N a natural number, and 
define gridpoints x, by x, = vh, v = 0, 1, 2, * , N. Using the notation v, = v(x,), we 
approximate (1.1) by 

(2.1) h'Lhv, = 1 Ci(x,, h)E'v, = hnF,, v = r, r + 1, * , N- s. 
j=-r 

Here, r, s are natural numbers with r + s > n, and Ci(x,, h) are m X m matrices 
which belong to C1 as functions of x and are polynomials in h. Furthermore, E 
denotes the translation operator, i.e., E'v, v,+i and F, is an approximation of F, 
such that 

(2.2) lim sup IF, - , = 0. 

Practically all of the difference approximations used are of the form (2.1). For later 
reference, we discuss some of them: 

(1) We approximate the system of differential equations 

(2.3) dy/dx + A(x)y = F 

by 

(2.4) D+v, + 2 A(x, + lh)(E+ I)v,= (E+ 
I)F,, V = 0, 1, 2, **,N-1. 

Here, I = E, D+ = h-'(E - I) and r =0, s = 1, i.e., r + s = n. This type of ap- 
proximation has been thoroughly studied by Keller [2]. 

(2) We approximate the differential equation 

(2.5) d2y/dx2 + ao(x)y = F 

by the usual difference equations 

(2.6) D+D_v, + ao(x,)v, = F,, D- = h-1(I - E 1), V = 1, 2, * , N- 1; 
or 

(2.7) (D+D - D 7 D+ D2)v. + ao(x,)v, = F,, v = 2, , N -2. 

In the first case, r = s = 1, i.e., r + s = 2 = n, while in the second case, r = s = 2 
and r + s > n. 

We want to define consistency of the difference equations (2.1). For this reason, we 
rewrite the equations in the form 
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r+8 

(2.8) h'Lhv, = J C3(x,, h)(hD+)v,.- = hnPy. 
i=O 

Here, the Ci(xy, h) are linear combinations of the C(x,, h). For example, (2.4), (2.6) 
and (2.7) can be written as 

((I + 2hA(x, + 2h))(hD+) + hA(x, + 2h))v, = 2h(E + I)F,, 
((hD+)2 + h2ao(x,)(hD+) + h2ao(x,)I)v,-1 = h2Fy 

and 

(- A(hD+)4 + (hD+)3 + (1 + h2ao(x,))(hD+)2 

+ 2h2ao(x,)(hD+) + h2ao(x,)I)v,-2 = h2Fy, 

respectively. 
Definition 2.1. The difference approximation (2.1) is consistent, if there is a 

constant K1 > 0 such that, for all h > 0, 
n-1 

(2.9) sup ICn(x, h) - Ij + E Ihz' C1(x, h) - Aj(x)I < Klh. 
x j=O 

There is no difficulty in showing that this definition is equivalent with the usual 
one. We leave the proof of the following lemma to the reader: 

LEMMA 2.1. The difference approximation is consistent if and only if for every 
w(x) C C' there is a constant K(w) such that, for all h > 0, 

(2.10) sup ILw(x,) - Lhw,I < K(w)h. 
r v5 v N-s 

It is obvious that the difference approximations (2.4), (2.6) and (2.7) are consistent 
with the corresponding differential equations. 

For later purposes, we write (2.8) in the form 
n-1 

.11) LhV, = S0(h) Dn+V,-r + E Ai(x,, h) D+V,-r = F, 

v = r, r + 1, * , N -s. 

Here, Al(x, h) = h Cie(x, h) and So(h) denotes a uniformly bounded difference 
operator of the form 

r +s,-n 

(2.12) So(h) = E Sok(x,, h)EA, 
k=O 

whose coefficients are linear combinations of Ct, *. *, Cr+,. For example, for (2.4), 
(2.6) and (2.7), the operator So(h) has the form 

So(h) = I + 'hA(x, + -h), So(h) = I, 

and 

So(h) = -1(hD+)2 + (hD+) + (1 + h2ao(x,))I 

= -.E2 + -E- (w- h2 ao)I, 

respectively. 
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From (2.9), it follows that 
r+8-n r+s-n 

(2.13) > SOk(X,, h) = I + 0(h), i.e., . Sok(X , 0) = I. 
k=O k=O 

(2.1) represents (N - (r + s) + I)m linear equations for the (N + l)m unknowns 
v", v = 0, 1, 2, * - - , N. Therefore, we have to add (r + s)m boundary conditions. These 
boundary conditions are also linear expressions between the v; near the boundary 
points x = 0 and x = 1. We shall write them in the form 

(2.14) BlhV = E (Pjl(0, h) D+V0 + Bil(l, h) DLVN) + hR1+1 = gl(h). 
j =O 

Here, Ali are rectangular matrices whose elements are polynomials in h, and R1+lv 
stands for a linear combination of divided differences D+lvi for which an estimate 

(2.15) IR,+lvl < K2 max jDl+1v^j, K2independentof h, 

holds. Thus, R,+iv represents the higher-order terms. 
Definition 2.2. The boundary conditions (2.14) are consistent if the following 

conditions are fulfilled: 
(1) If r + s = n, then I < n - 1 in (2.14) and there is a constant K3, independent 

of h, such that 

(g(h) - g1/ + EB LBj(0, h) - B2j(0)/ + jB3j(1, h) - Bjj(1)/ 
< K3h, 

(2.16) i=o 
I = 0, 1, * n-. 

(2) If r + s > n, then there are still nm boundary conditions of type (2.14) with 
1 < n - 1 for which (2.16) holds. Furthermore, there are ((r + s) - n)m extra bound- 
ary conditions of the same type with I ? n. 

We do not know of any difference approximation which cannot be written in the 
above form. Let us now consider the examples. 

(1) The boundary conditions for the system (2.3) are given by 

(2.3a) Boo(O)y(O) + Boo(1)y(l) = 0 

and we use 

(2.4a) Boo(0)vo + Boo(1)VN = 0 

as an approximation which is obviously consistent. 
(2) For the differential equation (2.5), the boundary conditions shall be given by 

(2.5a) y(O) = y(l) = 0. 

As an approximation, we use 

(2.6a) vO = VN = 0 

or 

(2.7a) VO = VN = 0, D+vO = D-VN = 0, 

where r is a natural number with r > 2. Even these approximations are consistent. 
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Remark. D'vo = DtVN = 0 defines some kind of extrapolation which is indepen- 
dent of the differential equation. However, one can also use the differential equation 
to derive the extra boundary conditions. From (2.5) and (2.5a), it follows that 

y"(0) = F(0), y"(l)= F(1), 

and, therefore, we can use instead of (2.7a) 

(2.7b) 00 = VN = 0, D+o = F(0), D2VN = F(1). 

The accuracy of (2.7b) is, of course, improved if h = (N - 2)-i and x. is defined by 
Xv = (v - )h, i.e., xo = -h, XN = 1 + h. 

We shall also consider the eigenvalue problem. In that case, we approximate 
(1.3) by 

(2.17) Lhl = XhShiv,, v = r, r + 1, * , N - s, 

with boundary conditions 

(2.18) Blh= 0. 

Here, Sh is a uniformly bounded operator of the form 

(2.19) Sh= Sl(s,, h)E'. 
j =-r 

The coefficients Si, are matrices which belong to C1 as functions of x and are poly- 
nomials in h. For consistency, we assume that 

(2.20) sup E S11(x,, h) - I < K4h, K4 = const independent of h. 
v j=-r 

For our examples, we get 

(2.21) D+ V, + 2 A(x, + Ih)(E + I)6' = iXh(E + 1W',, 

(2.22) D+Di/k, + a(x,)*V, = XV, 

(2.23) (D+D_ - - D D2>t1, + a(x,)}6, = X4V- 

3. General Convergence and Stability Theorems. In this section, we want to 
prove a number of general stability and convergence theorems. Let QX denote the 
Banach space of all gridfunctions v = (vo, v,, ... , VN)' with the norm defined by 

I [v Ih = max Iv,I . 
O -- V g N 

If v C 3h, then it is not true that w = D+v also belongs to h, because w, = D+v, is 
only defined for v = 0, 1, 2, *9* , N - 1. We shall, however, use the notation 

I ID+v |h = max I D+v I. 
0? ,5N-1 

In general, if TV, = EJ=_- Ti(x,)E'v, is a difference operator, then 

IITV1Oh= max ITv,f. 
Ds5 V N- a 
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Thus, 

IID+D_V| h = |ID+k VI|h = max D+v,, |I. 
O0jcN-i-k 

We shall denote by e3 the Banach space of all functions f(x) C C with the norm 
defined by 

lIflt = sup If(x)I. 

With these notations, we write down the following two well-known lemmas: 
LEMMA 3.1. Let j, k with j < k be natural numbers. For every 6 > 0, there are 

constants Cik(b), independent of h and v, such that 

I I D+vIlh - a|11D+vI |h + Cik(a)IIVIIAh 

LEMMA 3.2. Let k be a natural number. For every h and every gridfunction Vh, there 
exists a function w = w(x, k, h) C Ck and constants di k, independent of h and v, such 
that 

w(x,, h) = vP, v = O, 1, 2, ., N, 

I I D+vIlh ? _Id'w/dx'I I< dik(? |VIh +| I D+vIIh), j = 0, 1, 2, , k. 

Proof. The function w of Lemma 3.2 can, for example, be constructed in the 
following way: Define v, for v > N by Dk+1vNk+ = 0, u = 0, 1, 2, * * * , and construct 
w by Hermite interpolation with d'w(x,)/dx' = D+v,, j = 0, 1, 2, , k. This process 
we-shall denote by w = Intk v. 

Lemma 3.2 implies that Lemma 3.1 holds if we can prove it for the continuous 
case, i.e., 

lId'u/dx'Ill < aldku/dxkIl + Cik(a)IIUII. 

Let IJuI 2 = (fo Jul2 dx)1'2 denote the L2-norm of u. Then the above inequality follows 
from the corresponding Sobolev inequality 

|IId'u/dx'|12 < 21 dku/dxk 12 + C2Uk( )Iul 12 

With these two lemmas, we can now prove the main result of this section. 
THEOREM 3.1. Assume that X = 0 is not an eigenvalue of (1.3) and that there is a 

constant K1 such thatfor all h and all solutions of (2.1), (2.14) an a priori estimate 

(3.1) IID'v+lh < Kl(IvIIlh + IIF|Ih + 1E g11) 

holds. (Here we define F,=Ofor v = O, 1, ,r-1 and v = N-s + 1,* ,N.) 
If the Eqs. (2.1), (2.14) are consistent, then these equations have, for every F, g and all 
sufficiently small h, a unique solution v C 3h, and there is a constant K2 such that 

(3.2) IVIlh -< K2( IIFIh + 2 II) 1 

Furthermore, the interpolated function Intn v converges to the solution u of the dif- 
ferential equations, i.e., 

(3.3) lim Intn v-uhl = 0. 
h- n 
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Proof. Assume that (3.2) does not hold. Then, we can select subsequences hi, 
i') g`'i, j = 1, 2, ... , with 

hi O , I I (i)lh 
?, 
IhAi) 

?_ , 

such that the equations 

(3.4) Lhiv, = [(, BlhiV = 

have, for every]j, a solution v'i with IIv(ijjhK = 1. 
Using Lemma 3.2 with k = n, we can construct a sequence of functions w ' i(x) = 

Int, v('), which, by (3.1), have uniformly bounded derivatives up to the order n. 
Therefore, we can, without restriction, assume that w 1(x) and its first n - 1 deriv- 
atives converge uniformly to a function u(x) and its derivatives. Here II u(x)I I = 1. Add 
the Eqs. (3.4) for v = r, r + 1, * , and use the notations h = hi, wp = wp= v. 
Then 

u14 n-1 A u 

E So(h)D+I4wrh + E E Ai(x,,, h)D+wa rh = P(')h, 
*3.5) =r i=O a=r a=r 

,u-=r, N? N s. 

By (2.12), 

E So(h)Dnw-r,h = (So(h)- I)DnWa-rh 
a=r a~~~~~~o=r 

= Dn-1 r - Dn-71w + Rlp + R2P, 

where 

R11 = E SOJ(E - 1)D+Wairh, 
k a=r 

Is 

R2 = E (E Sok - I) W Wrh. 
ar=r k 

By assumption, the S0,k = SOk(Xa, h) belong to C1 as functions of x and are polynomials 
in h. Therefore, partial summation gives us 

max JR1,I < const h II D+ WIIh = const h IID DvI Ih < const h. 

From (2.13), it follows that the same inequality also holds for R2,. Thus, (3.5) implies 
that u(x) is the solution of 

- dn"u(0)/dxn' + f E AiQ)(d'u(Q)/dE ) dS = 0, 

i.e., Lu = 0. 
It is obvious that u also fulfills the boundary conditions (1.2). Therefore, X = 0 is 

an eigenvalue of (1.3) which is a contradiction. We have proved that an estimate of 
type (3.2) holds. 

Writing the difference equations (2.11) in the form (3.5), consistency and the 
inequalities (3.1) and (3.2) then imply (3.3). 

We shall now derive algebraic conditions such that the estimate (3.1) is valid. Let 
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y,= Dvp, v = 0, 1, 2, ,N - n. Then, we can write the Eq. (2.11) in the form 

(3.6) So(O)y pr =G, v = r, ., N -s, 

and it follows from (2.11) and (2.13) that 

IIGIIA h const(E I ID'vIIh + II fPi)h 

(Here we again define Gn eO for v = O O, r-1 and v =N-s + 1, ,N.) 
If we use the relations 

Da v = Do' y Di-yn, a > n, 

then, we can write the ((r + s) - n)m extra boundary conditions (2.14) with 1 > n, 
after multiplication with h -, in the form 

N-n 

(3.7) , Hilyi = gj. 
i =o 

Here, the Hi, are rectangular matrices independent of h and, for g,, we have an 
estimate 

n-1\ 

(3.7a) IgiI < const ( I IDAvIh + h1' E II). 
JA= 0 1 2n 

(3.6) and (3.7) represent (at least formally) (N - n + 1)m linear equations for the 
(N - n + 1)m unknowns yo, * , YN-n. From Lemma 3.1, we obviously get 

THEOREM 3.2. Assume that the Eqs. (3.6) and (3.7) have, for every G, and gi, a 
unique solution and that there is a constant K3 such that, for all h, G, and g l, 

(3.8) max IyI < K3( max IGi IG + max 1gi I, 
0-_ P N-n r<P<N-8l 

then (3.1) holds. 
A corollary is 
THEOREM 3.3. Assume that r + s = n, i.e., the difference scheme is as compact as 

possible. Then (3.8) holds. 
Proof. By (2.13), we have SO(O) = I and (3.8) follows from (3.6). 
Thus, for compact difference schemes, we have only to make sure that the boundary 

conditions are consistent. Therefore, Theorem 3.1 implies that the solutions of our 
first two examples (2.4), (2.4a) and (2.6), (2.6a) converge to the solution of the dif- 
ferential equations if X = 0 is not an eigenvalue of (1.3). 

In most applications, the difference equation (3.6) is a scalar equation with constant 
coefficients, i.e., we can write it in the form 

8-n 

(3.9) E aAEy =G v = r , N -s, 
M=-r 

where the a, are constants. In this case, we can prove: 
LEMMA 3.1. Let the difference equation (3.6) be of the form (3.9) and denote by K; the 

solutions of the characteristic equation 
8-n 

(3.10) E aKIA = 0. 
M=-r 
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The estimate (3.8) holds if and only if all IKil 7j 1 and (3.8) is validfor the special 
case that G _ 0. 

Proof. Let K1 = e", a real, be a solution of the characteristic equation, then we can 
write (3.9) in the form 

(3.11) (E -e e)w, = Gv, wY = a8-n J (E - Ki)y,. 

If (3.8) is valid, then w, has to be bounded for all G,. This is impossible. We need only 
to choose G, = e'G,. Thus, the conditions of the lemma are necessary. 

Assume now that all Ijl ? 1. Then, there is no difficulty in showing that (3.9) 
has a particular solution w, i.e., 

8-n 

E a,ESW. = a8-n (E- Ki)Wv = Gp, 
M>=-r i 

with 

max Iw,j < const max IG,I. 
0 5v5N-n r- rsN-8 

Subtracting w from y, the lemma is proved. 
Let us now consider the difference equation (2.7) with the boundary conditions 

(2.7a). Observing that 

(D+D D- D D:)v= (D2 + hD - D+4 

it follows that the homogeneous equation (3.6) has the form 

(3.12) (I + hD+ - -2 D4 y-2 = 0. 

The boundary conditions (3.7) are given by 

(3.13) h2 DT2Yo = 1 h D_ YN-2 = g2. 

The solutions of the characteristic equation 1 + (K - 1) - (K - 1)2 = 0 are 
Ki = 7 - /48 - 0.07 and K2 = 7 + \/48 - 13.93. Therefore, the general solution of 
(3.12) has the form 

v + a2Kv-N 
Yv = alK1 2 

The a, are determined by the boundary conditions (3.13) and there is no difficulty in 
showing that the desired estimate holds for any r. We have thus proved that the 
solutions of (2.7), (2.7a) converge to the solution of the differential equation if X = 0 
is not an eigenvalue. 

One can generalize the above results considerably. We state without proof: 
THEOREM 3.4. Consider the characteristic equation 

r+s-n 

Det E S0(XV, O)Kk = 0, 
k=O 

for all fixed x,. If, for all its solutions K, IKil 1, then the estimate (3.8) is valid if it 
holds for the special case G = 0. 

If the boundary conditions (3.7) can be separated into linear relations 
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a N-n 

H Hly = gi =Hgly 
j-O i-N-n-p 

where q and p are some natural numbers independent of h, then one can go still 
further. Consider the half line problems with constant coefficients which we get 
from (3.6) and (3.7) by moving one of the boundaries to infinity and freezing the 
coefficients at the other boundary, i.e., 

r+ s-n 

(3.14) E S01,(O, O)Eky,, = 0, v = r, r + 1, , N, N + 1, 
k=O 

with boundary conditions 
q 

(3.15) E Hilyi = 0, sup yPI < const, 
j=O r:5v<- 

and 
r+s-n 

(3.16) E SOi(1 , 0)EkYp-r = 0, V = N - s, N - s - 1, * , 0, -1, 
k=O 

with boundary conditions 
N-n 

(3.17) E Hilyi = 0, sup IyjI < const. 
i=N-n-p N-8sv>-Xo 

Then we have 
THEOREM 3.5. Assume that the conditions of Theorem 3.4 are valid and that the 

problems (3.14), (3.15) and (3.16), (3.17) have only the trivial solution. Then the estimate 
(3.8) holds. 

Let us consider the difference equation (2.7) with boundary conditions (2.7a) once 
more. The general solution of (3.12) with sup, ly I _ const is given by y, = a,K' and, 
therefore, hr-2Dr-2yo = o1(K1 - 1)-2 = 0 implies that oa = 0, thus, that the cor- 
responding Eqs. (3.14), (3.15) have only the trivial solution. Obviously, the same is 
true for the Eqs. (3.16) and (3.17). 

The stability results which we have derived here are independent of the particular 
differential equation, i.e., they depend only on the approximation of the nth derivative 
and the choice of the extra boundary conditions. If the solutions Ki of the characteristic 
equations do not have the property that Ki| $ 1, then this is no longer true and one 
cannot develop any general theory. We shall illustrate this by an example: 

Consider the differential equation 

du/dx = 0, u(O)= g 

and approximate it by 

vV+1 - = 0, vo = go, D+vo + 2D_VN = g1 

Then 

v, = ol + 02(-1) , 

where oa, o2 are determined by 

vO= 0i + 02 = 90, 
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h(D+vo + 2D-VN) = (-2 + 4(-1) )o2 = hgl, 

i.e., 

(3.18) (-2 + 4(-1)N)v, = (-2 + 4(-1) )go + h((-1) - 1)gj. 

Therefore, the v, converge to u. If we now change the differential equation to 

du/dx - au = 0, u(0) = go, 

and approximate it by 

V+1 - VV-1 - 2ahv, = 0, Vo = go, D+vO + 2D-VN = 91, 

then 

v,, = oleax(l+o(h2)) + o2(_ lYe -ax (l+o(h2)) 

and o-, o2 are determined by 

a1 + a2 = 0, 

hIoja(eah/2 + 2ea(1-h/2) + 0(h2)) + o2(1 + 2-ah)(_1 + 2e a(1) + 0(h 2)) = hgl. 

An easy calculation shows that we do not get convergence if N is even and a = log 2. 

4. Error Estimates. We have already proved that the solutions of the difference 
equations converge to the solution of the differential equation. We shall now derive 
refined error estimates. We start with 

LEMMA 4.1. Assume that X = 0 is not an eigenvalue of (1.3). Consider the equations 

(4.1) LhW, = 0 

with boundary conditions 

(4.2) Blhw =O for l ? n-1, 
= hn- g- for 1 _ n 

and assume thatfor the Eqs. (3.6), (3.7) the estimate (3.8) holds. Then, there is a constant 
K4 independent of h and g1, such that, for the solutions of (4.1), (4.2), an estimate 

(4.3) IIWIIh _ K4 E 1i 

is valid. 
Proof. From (3.7a) and (3.8), it follows that an estimate of type (3.1) holds for w. 

Therefore, the estimate (4.3) follows by the same argument as the estimate (3.2). 
In most cases, one can improve the above estimate. We can, for example, prove 
LEMMA 4.2. Assume that the conditions of Lemma 4.1 are fulfilled and that the Eqs. 

(3.6) have the form (3.9) and all solutions Ki of the characteristic equation (3.10) are 
distinct. Then we get, instead of (4.3), an estimate 

(4.4) |lWIlh _ hKs E Ig-11 

If, furthermore, lmar = max, 1^ < n - 2 for the highest derivative appearing in the 
boundary conditions (1.2), then 

(4.5) IIWIlh _ h2K6 ZE Ig1. 
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Proof. Let y be the solution of 
N-n 

(4.6) S0(0)Yv-r = 0, j = gl1 
i=0 

By assumption and Lemma 3.1, 
' + i v-N 

|Kj <1 | Kj | >1 

with 

lail < const 1: igll, lKi 1 1.z 

Define z4) by 

(4.7) 41l) = hn(n } -li(Ki )Kn + ai(Ki )-n -N 
|Kj i| <I | Kj i>1 

then D+zv'1 = Yv and v = w - z") is'the solution of 

Lhv= hG, IIGIlh < const S jg1j, 

(4.8) BlhV= h n-l for 1 < n - 1, 1 ? const i ig1i. 

= hn-c+'1# for 1 ? n, 

Therefore, v = v' + v", where v', v" are the solutions of 

L(V9 = hG,, BlhvI = h 01 for 1 < n- 1, 

= 0 for l _ n, 

and 

(4.10) LhV= 0, BlhVv = 0 for 1 ? n - 1, 

= hn-1+ for 1 _ n, 

respectively. Then, the estimate (4.4) follows from (4.3) and (3.2). 
Let lm',c < n - 2. Then, we define z 2' by 

(4.11) Dniz('1 = y 2 42)= n1 =2... = D )-1 = 0 

where 9. is the solution of 
N-n 

S?(0)Yv-r= hG,, E Hijy = hkl, v = r, ., N -s. 
i =o 

(4.7) implies that there is a constant d with 0 < d < 1 such that 

IG,I < const(d' + dN) 
P 

gN 

and therefore also 

IY < h const(d' + dN) 
N 

Thus, 

IID+z(2)llh < h12 const E IgZj for j = 0, 1, 2, n * *, n- 1. 

v W z - z isthe solution of 
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(1) 2A 
Lhv(l = h2G(2) IIG(2)IIh ? const Z Igl 

Bvlh)= 91 for 1 < n - 2, A 

? const E 
i 

= hn-1+201 forl_ n, 

Therefore, (4.4) follows in the same way as above. 
There is no doubt that Lemma 4.4 can be generalized considerably. For example, 

the assumption that the solutions Ki of the characteristic equation are distinct is 

unnecessary. This can be seen by a simple perturbation argument. 
Furthermore, it can be shown that the estimates are sharp. 
It is now easy to derive error estimates: Let u be the solution of (1.1), (1.2) and 

substitute it into the difference equation. Then there is a natural number a, the order 

of the difference approximation, such that 

Lhu, = F, + hkGp, 

(4.12) BlhU = g- + hafl for I < n- 1, 

=gl +f1 forl? n. 

We get 
THEOREM 4.1. Assume that the conditions of Lemma 4.1 or 4.2 are fulfilled and let v 

denote the solution of the corresponding difference equations. Then 

n-1 \ 

I||U - VI h = h'K2 I IGIIh 
+ E |fl) I+ h7 K7 h' -n 

if,Il 
1=0 ISg-n 

Here, a- = 0, 1, 2 and K7 = K4, K5, K6, if the estimates (4.3), (4.4), (4.5), respectively, 
hold. 

Proof. The estimates follow in the usual way by writing down the difference 

equation for u - v and then using a representation of type (4.9), (4.10). 
It is easy to see that a = 2 for the approximations (2.4), (2.4a) and (2.6), (2.6a). In 

these cases, the second sum in the error estimate does not appear. For (2.7), (2.7a), we 

have a = 4 and the second sum is of order 0(hr). For (2.7), (2.7b), we again have 

a = 4 and the second term is of order 0(h4) if we use a grid defined by x, = (v - 1)h, 
h = (N -2)- 1. Otherwise, it is of order 0(h3). 

One can always construct compact difference schemes, i.e., r + s = n, such that 

the truncation error can be expanded into power series Ej h2v4,(x) in h2. Therefore, 

it is doubtful that one should use difference schemes with r + s > n to increase the 

accuracy. Instead, one can use Fox's difference correction method [1] or Richardson 

extrapolation. Justifications of these methods are given in [3], [4] and depend on the 

estimate (3.2). 

5. The Algebraic Eigenvalue Problem. The eigenvalue problem for the dif- 

ferential equations can be considered as the limit of finite-dimensional problems. 

Therefore, we shall discuss the latter briefly. 
Let X, denote the p-dimensional vector space x = (xi, * , xl)'. Denote by A a 

p X p matrix, and let X1 be an eigenvalue of A, i.e., a solution of 

(5.1) Det IA - XI| = 0. 
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It is well known that the associated invariant subspace J is given by the projections 

(5.2) J = PXp, 2 = f (A - I)1 dz. 

Here, 6, > 0 is a constant which is so small that there is no other eigenvalue X with 
I N - X,j I 61. A basis of J can (for theoretical reasons) be constructed by solving the 
set of equations 

(5.3) (A - X,)yo = 0, (A - X,I)yl = yo, *--, (A - X,I)yi+l = Yi, 

Now let B be another p X p matrix and let us consider the generalized eigenvalue 
problem 

(5.4) Ax = XBx. 

Without restriction, we may assume that 

Ax = O, Bx= 0 imply x = 0. 

Then, the eigenvalues are given by 

(5.5) Det i(A- XB)j = 0. 

The invariant subspace J associated with an eigenvalue Xi is given by 

(5.6) J = P Xp2 = (A - zB) 'B dz, 27ri 1-X1 1=61 

and a basis of J can be constructed by solving the equations 

(5.7) (A - X,B)yo = 0, (A - XB)yl = Byo, *. , (A - XB)yi+l = Byi, 

If B is nonsingular, then we can write (5.4) in the form B- 'Ax = Xx, and (5.6), (5.7) 
follow directly from (5.2), (5.3). If B is singular, then we perturb B and consider 

P(E) = - i. f (A- zl)-i) dz, B = B + eBl. 

Here, B, is chosen in such a way that B is not singular in an interval 0 < e < C. 
Observing that P(e) is, for sufficiently small E, an analytic function of E, the relations 
(5.6) and (5.7) follow by a perturbation argument. 

In applications, the generalized eigenvalue problem (5.4) is often written in the 
form 

(5.8) Ax = NBx, with side conditions Cx = 0. 

Here A, B are 1 X p matrices, I < p and C is a p - I X p matrix. (5.8) can, of 
course, be written in the form (5.4), 

(5.9) A x= ( o)X. 

Let Z, denote the subspace of vectors x E X, with Cx = 0 and denote by X(z) the 
operator 

C(z)x = (A - zB)x, x ?E Z, 
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which maps Ti into X, If z is not an eigenvalue of (5.9) then X(z)-' exists and we can 
write the invariant subspace connected with an eigenvalue X1 of (5.9) in the form 

(5.10) J = PXp, P = -2 I x(z)-1B dz. 
27r I Z-X1 1 =6 

This follows directly from (5.6) and (5.9) because 

((C) (O) = (O (zBx. 

Remark. If there is more than one eigenvalue inside the circle Iz - X11 < 61, then J 
denotes the combined invariant subspace. 

6. The Eigenvalue Problem for the Differential Equations. Let ? E 5B denote 
the subspace of all c E C which fulfill the homogeneous boundary conditions (1.2), 
i.e., B,0 = 0. Then we can write the eigenvalue problem (1.3) in operator form 

(6.1) vo = X4, I 4 E ?). 

We assume that not all complex numbers X are eigenvalues. Then the equation 

(6.2) ( -zI)u = F, y C , 

has a unique solution for every z which is not an eigenvalue and every F E 5B and 

II ( - zI')- < o if z is not an eigenvalue. In fact, (3 - zI)-1 is a meromorphic 
function of z with poles at the eigenvalues. Let X1 be an eigenvalue and assume that 
6 > 0 is a constant such that no other eigenvalue belongs to lIz - X1i1 ? 8. Then the 
invariant subspace J(X1) which is associated with X1 is given by the projection 

(6.3) J(X1) = pA3, P = . (e - zIY- dz. 
2eri z-nl l =a 

It is well known that J(X1) is finite-dimensional. 
The operators Lh, Sh, defined by (2.1) and (2.19), respectively, map th into the 

N - (r + s) + 1-dimensional vector space Vh consisting of the gridfunctions (w,, * r. 

WN-8). Let Z, E B,, denote the subspace of gridfunctions v = (v0, * , Vs)' which 

fulfill the boundary conditions (2.14) and denote by VI, (5h the restriction of Lh, Sh 

to Th. Now, we can write the discrete eigenvalue problem in the form 

(6.4) ;h7{ = XJh25hVJ, 7JJ E )h 
which is a generalized eigenvalue problem of the form (5.8). For the computation of 
the invariant subspaces, we consider the equation 

(6.5) (;h - ZSh)V = ShF, V E Zh, ShF = (ShFr, *, * ShFN-.)' E V . 

We now make a number of assumptions: 
Assumption 6.1. Let z be a complex number which is not an eigenvalue of V. We 

assume that there is constant ho > 0 such that 

Sup |I(Vh - Z2h) |I|h = K < co 
O<hsh, 

The following lemma is valid. 
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LEMMA 6.1. Let Q denote a compact set in the complex z-plane which does not 
contain any eigenvalue of V. If Assumption 6.1 holds, then there is a constant ho > 0 
such that 

sup I I(3h - Z2h) |Ih = Ku < 0 . 
zEQ,O<hSh0 

Proof. Let zo E U. By Assumption 6.1, 

( -h =ZZh ( -h ZOSO) (I + (Z - ZO)Sh(Uh - ZOSh)) 

is uniformly bounded in a whole neighborhood of zo. The lemma follows from the 
theorem of Heine-Borel. 

Let z E Q, F E iB be a fixed function and define F = ShF E Vh by A, = ShF^, 
v = r, r + 1, * * * , N - s. By Assumption 6.1, the function v = (h3h - 1ShF exists 
for all h _ ho and, by Lemma 3.2, we can construct the interpolated function w = 
Int4 v. We now make 

Assumption 6.2. For every z E Q and every F E iB, 

lim llw - ull = lim IIntl(Vh - Z(Sh)Y1ShF - (- zI) 1Fll = 0. 
h-0 h-0 

LEMMA 6.2. 

lim sup Ilw - ull = 0. 
h- O zEEQ 

Proof. From Assumption 6.1, it follows that the w's are analytic functions of z 
and that the first derivatives aw/lz are uniformly bounded for all z E Q and all h < ho. 
Therefore, the lemma follows from Assumption 6.2. 

LEMMA 6.3. Let h. -* 0, F"() E 5B be sequences with lim I0 IIF" - FlI = 0. 
Denote by u the solution of (V - zI)u = F and by w ") the solution 

W(A) = Int.(Vh - ZSh) lShF(1), h = hI. 

Then 

lim sup IIu - w() II = 0. 
h-0 zEO 

Proof. The lemma obviously follows from Assumption 6.1 and Lemma 6.1. 
Assumption 6.3. Let h, -* 0, P() E 5B with sup,, IIP") II < O be sequences. Then, 

we assume that the solutions of the discrete problem 

W(A)= Int.(Vh -ZSh) lShF("), z E Q, h = hp, 
form a compact sequence. 

Assumptions 6.1, 6.2 are the usual stability and consistency requirements. They 
guarantee that the eigenvalues of the discrete problem converge to the eigenvalues 
of the differential equations. However, the invariant subspaces need not converge. 
For that, the last assumption is essential. Consider, for example, the eigenvalue 
problem 

dy/dx - Xy = 0, y(0) = y ) 

and approximate it by the leap-frog scheme 

v,+, -v,-, - 2hIXv, = 0, vO = VN, V2 - VO = 0 
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It is easy to see that Assumptions 6.1 and 6.2 are fulfilled and X = 0 is an eigenvalue 
for both problems. However, the corresponding invariant subspaces are y = const 
and v, = const + oa(- 1)', respectively. 

The above assumptions are natural in our frame&work because we get from Theorem 
3.1 without difficulty: 

THEOREM 6.1. Assume that for every z there is an a priori estimate of type (3. 1)for 
the solutions of (6.5). Then, the Assumptions 6.1-6.3 are fulfilled. 

Let X1 be an eigenvalue of the differential equation (6.1) and J(X1) the correspond- 
ing invariant subspace. (5.10) shows that 

Jh(XAh) = Ph ,h, Ph = fA ( h -zhY1Sh dz 
Z-X1 I =6 

denotes the combined invariant subspace of the eigenvalues Xijh of the discrete eigen- 
value problem which lie inside the circle Iz - X11 < 8. We shall now imbed Jh(X,h) 

in 5B by interpolation. We let 

J(XAh) = Int. Jh(XAh) 

and prove 
THEOREM 6.2. limhbn J(X,h) = J(X1), i.e., for sufficiently small h the dimension of 

J(X,h) is the same as that of J(X1), and there is a basis of J(X,h) which converges to a 
basis of J(X1). 

Proof. Let Ck, * , *, be a basis of J(X1). Then, Pj(x, h) = Int4 Ph4i belongs to 
J(X,h). By Assumption 6.2 and Lemma 6.2, 

lim fj(x, h) = - 
I 
Ar - zI) 1 dzo, = . 

h-0 27r I z-X^1 1 e 

Therefore, we need only show that the ,67(x, h) define, for sufficiently small h, a basis of 
J(X,h). Assume that there is a sequence hg -* 0 such that, for every h = hg, there is a 
function ,6(x, h) E J(X,h) with 

1 

11 ,I(x, h)II = 1 and f ,6i*(x, h)q/(x, h) dx = 0, j = 1, 2, ... * p. 

Then 

ik(x, h) = -Int, . r (h_ - ZSh) dZShi(x, h). 

By Assumption 6.1, the sequence (Vh - ZS&) 'Shp(x, h), h = hg, is equicontinuous 
with respect to z. Therefore, Assumption 6.3 implies that the sequence ,6(x, h), 
h = h,, is compact and we can, without loss of generality, assume that lim ,6(x, h) = 

+(x). Then, it follows from Assumption 6.2 and Lemma 6.2, that 

?X = - (e - zI)-' dz4(x) E J(X). 

Furthermore, I I+I I = 1 and 0 is orthogonal to all 4i. This is impossible, and the theorem 
is proved. 

We have thus proved that the eigenvalues and corresponding invariant subspaces 
of the discrete problem converge to the eigenvalues and invariant subspaces of the 



622 HEINZ-OTTO KREISS 

continuous problem. In most cases, one can derive sharper error estimates and can 
show that Richardson extrapolation is possible. We want to show 

THEOREM 6.3. Consider any compact set Q which does not contain any eigenvalue 
and assume that there are natural numbers a and q such that (6.2) has,for every F E C", 
p ? q and any z e Q, a solution u(x, z) e C"'. Assume, furthermore, that for the 
corresponding solution of (6.5), there is an expansion 

(6.6) v = v(x, h, z) 

= U(x, z) + h'u (x, z) + + + ha(P-l)u 1(x, z) + O(hap), x = X 

Here, the ui(x, z) e Ca (P- ) as functions of x and are continuous functions of z. Then, 
there exists a basis { l j(xv, h) I of Jh( X,) such that 

(6.7) glj(x, h) = 4i(x) + ha4il(x) + * * * + ha(q-1) i(x) + 0(haq) x = xv 

where 4, C Caq denotes a basis of J(X1) and o. Ce Ca (q-V). 

Furthermore, if X1 has multiplicity r, then there are precisely r eigenvalues X,1, 
counted according to their multiplicity, with I - X,11 < cc and 

1 ar-)a) 
(6.8) - i X,h = X1 + haX11 + * + h Xlq-1 + O(h ) 

Proof. Let F = e - J(X1). Then C- Ca' and, by (6.6), 

41 i(x, h) = Ph j = vI (x, h, z) dz 

= oi(x) - 
,i 

I ui(x, z) dz+.** 

and (6.7) follows directly. 
Let z0 C Q and oi - J(X1). Then also (V - zo 4`f C- J(X1) and, therefore, 

(6.9) ( - zoI)i = a akk 
k=1 

The r X r matrix A = (aik) has the sole eigenvalue X = (X1 -zo)- . In the same way, 
if 4'; C Jh(Xh), then 

(6.10) ( h - Z02h)YShj = bAjk 
k=1 

and the r X r matrix B = (bik) has the eigenvalues (X,h -z0)', v = 1, 2, * , T. We 
want to derive a relation between A and B. By (6.7), 

bik/k = (bh - ZOek) Shkj + h a( h - ZOh)Y S4hOi1 + 
k=1 

Now, apply (6.6) to all of the terms on the right-hand side. Then, (6.9) gives us 

Ak = (3 - zoI)j14j + hawli(x) + hIlaW2i(X) + 
k=1 

= E aikcIk + hIwlii(x) + h2a W2j(X) + *.. 
k=1 
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We can now use (6.7) to' express 4k in terms of the 7k and get 

bik = aik 46k + Ri. 
K= k=1 

Rj = h afl i(X) + h2afV21(x) + E* E Jh(Xvh) and therefore (6.7) implies that 
a-1 

R i h ci k lk + O(ha) 
a=l 

Therefore, 

B = A + hCj + h2aC2 + ... + ha( q)C 1 + O(ha) C = k 

and (6.8) follows without difficulty. 
We have thus shown that the error behavior of the eigenvalue problem is the same 

as that of the inhomogeneous problem, the estimates for our examples are obvious. 
If the dimensions of the invariant subspaces are always one, then there are no practical 
problems either. Otherwise, we have to cope with two difficulties: 

(1) If there is an eigenvalue of multiplicity r > 1, then it might be difficult to 
decide which are the r eigenvalues Xi,h which converge to X. In general, this difficulty 
can only be overcome by some a priori information of the differential equation. 

(2) Assume that (6.7) holds and that we have constructed a basis { ,61(x, h), **, 
q7l(x, h) } for the invariant subspace Jh(X,h) for a number of values h = ho, hl, * 
with hl/h0 = pi = natural number. In general, Richardson extrapolation will not 
work directly. Though there is a basis in Jh( Xh) as described by (6.7), the particular 
bases we have constructed need not have that property. We can, however, proceed 
in the following way. 

(1) Compute bases for h = ho, h1, * and consider these bases for x = xv = vh0. 
(2) Now change the bases for h = hl, h2, * to bases { {i(x, h.)} x = c,, by 

demanding 
No 

(6.11) jj4'(x, h..) - qli(x, ho)112 = Z J'j(xv,, h.) - ho)12 ho = min. 
V =O 

We have 
THEOREM 6.4. Richardson extrapolation is possible for the bases 

{ ik(x, ho)}, {{(x, h,)1, x = x3. 

Proof. By (6.7), there are bases {tk(X, h.) } for which 

#k(X, ha) = 4Ok(X) + h kl(X) + ... + h 1qk-1(X) + O(h), X =xv 

and 
No 

(Okk(X, haz), #1(x, hIz))2 = Z 1Vk(Xh, gz)^,&(5, Iz)ho = 0 for k 7 1, 
V=0 

= 1 for k = 1. 
Therefore, 

iV (x, h.a) = E aikk(x, h.a) 

and (6.11) implies 



624 HEINZ-OTTO KREISS 

aik = (Vlk(X, h), # j(x, ho))2. 

This proves the theorem. 
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